Normalize line endings per .gitattributes

This commit is contained in:
Roboboffin
2025-10-23 03:59:37 +01:00
parent 20b53a8780
commit 24eb354ace
64 changed files with 0 additions and 2967 deletions

View File

@@ -1,49 +0,0 @@
#pragma once
//==============================================================================
template <typename SampleType>
class AudioBufferQueue
{
public:
//==============================================================================
static constexpr size_t order = 9;
static constexpr size_t bufferSize = 1U << order;
static constexpr size_t numBuffers = 5;
//==============================================================================
void push(const SampleType* dataToPush, size_t numSamples)
{
jassert(numSamples <= bufferSize);
int start1, size1, start2, size2;
abstractFifo.prepareToWrite(1, start1, size1, start2, size2);
jassert(size1 <= 1);
jassert(size2 == 0);
if (size1 > 0)
juce::FloatVectorOperations::copy(buffers[(size_t)start1].data(), dataToPush, (int)juce::jmin(bufferSize, numSamples));
abstractFifo.finishedWrite(size1);
}
//==============================================================================
void pop(SampleType* outputBuffer)
{
int start1, size1, start2, size2;
abstractFifo.prepareToRead(1, start1, size1, start2, size2);
jassert(size1 <= 1);
jassert(size2 == 0);
if (size1 > 0)
juce::FloatVectorOperations::copy(outputBuffer, buffers[(size_t)start1].data(), (int)bufferSize);
abstractFifo.finishedRead(size1);
}
private:
//==============================================================================
juce::AbstractFifo abstractFifo{ numBuffers };
std::array<std::array<SampleType, bufferSize>, numBuffers> buffers;
};

View File

@@ -1,47 +0,0 @@
#pragma once
#include "SynthVoice.h"
#include <JuceHeader.h>
class NeuralAudioEngine : public juce::MPESynthesiser
{
public:
static constexpr int maxNumVoices = 8;
explicit NeuralAudioEngine(NeuralSharedParams& sp)
{
// Create MPE voices
for (int i = 0; i < maxNumVoices; ++i)
addVoice(new NeuralSynthVoice(sp)); // <-- takes MPESynthesiserVoice*
// MPE synths do not use addSound(); note events are routed via MPE zones.
setVoiceStealingEnabled(true);
}
void prepare(const juce::dsp::ProcessSpec& spec) noexcept
{
setCurrentPlaybackSampleRate(spec.sampleRate);
for (auto* v : voices)
if (auto* nv = dynamic_cast<NeuralSynthVoice*>(v))
nv->prepare(spec);
}
template <typename VoiceFunc>
void applyToVoices(VoiceFunc&& fn) noexcept
{
for (auto* v : voices)
fn(dynamic_cast<NeuralSynthVoice*>(v));
}
private:
// keep base render
using juce::MPESynthesiser::renderNextSubBlock;
void renderNextSubBlock(juce::AudioBuffer<float>& outputAudio,
int startSample,
int numSamples) override
{
juce::MPESynthesiser::renderNextSubBlock(outputAudio, startSample, numSamples);
}
};

View File

@@ -1,80 +0,0 @@
#pragma once
#include <JuceHeader.h>
enum class BlepWave : int { Sine = 0, Saw, Square, Triangle };
class BlepOsc
{
public:
void prepare (double sampleRate) { sr = sampleRate; resetPhase(); }
void setWave (BlepWave w) { wave = w; }
void setFrequency (float f) { freq = juce::jmax (0.0f, f); inc = freq / (float) sr; }
void resetPhase (float p = 0.0f) { phase = juce::jlimit (0.0f, 1.0f, p); }
inline float process()
{
// phase in [0..1)
float out = 0.0f;
float t = phase;
phase += inc;
if (phase >= 1.0f) phase -= 1.0f;
switch (wave)
{
case BlepWave::Sine: out = std::sin (2.0f * juce::MathConstants<float>::pi * t); break;
case BlepWave::Saw:
{
// naive saw in [-1..1]
float s = 2.0f * t - 1.0f;
// apply BLEP at the discontinuity crossing t=0
s -= polyBlep (t, inc);
out = s;
} break;
case BlepWave::Square:
{
float s = (t < 0.5f ? 1.0f : -1.0f);
// rising edge at 0.0, falling at 0.5
s += polyBlep (t, inc) - polyBlep (std::fmod (t + 0.5f, 1.0f), inc);
out = s;
} break;
case BlepWave::Triangle:
{
// integrate the BLEP square for band-limited tri
float sq = (t < 0.5f ? 1.0f : -1.0f);
sq += polyBlep (t, inc) - polyBlep (std::fmod (t + 0.5f, 1.0f), inc);
// leaky integrator to keep DC under control
z1 = z1 + (sq - z1) * inc;
out = 2.0f * z1; // scale
} break;
}
return out;
}
private:
// PolyBLEP as in Valimäki/Huovilainen
static inline float polyBlep (float t, float dt)
{
// t in [0..1)
if (t < dt)
{
t /= dt;
return t + t - t * t - 1.0f;
}
else if (t > 1.0f - dt)
{
t = (t - 1.0f) / dt;
return t * t + t + t + 1.0f;
}
return 0.0f;
}
double sr = 44100.0;
float freq = 440.0f, inc = 440.0f / 44100.0f;
float phase = 0.0f;
float z1 = 0.0f;
BlepWave wave = BlepWave::Sine;
};

View File

@@ -1,99 +0,0 @@
/*
==============================================================================
GraphComponent.h
Created: 4 Jul 2025 11:43:57pm
Author: timot
==============================================================================
*/
#pragma once
#include <algorithm> // for std::minmax_element
#include "AudioBufferQueue.h"
//==============================================================================
template <typename SampleType>
class GraphComponent : public juce::Component,
private juce::Timer
{
public:
//==============================================================================
GraphComponent(SampleType minIn, SampleType maxIn, int numPointsIn)
: min(minIn), max(maxIn), numPoints(numPointsIn)
{
x.resize(numPoints);
y.resize(numPoints);
setFramesPerSecond(30);
// func will be set via setFunction before paint; provide a safe default
func = [](SampleType) noexcept { return SampleType(); };
}
//==============================================================================
void setFramesPerSecond(int framesPerSecond)
{
jassert(framesPerSecond > 0 && framesPerSecond < 1000);
startTimerHz(framesPerSecond);
}
//==============================================================================
void setFunction(const std::function<SampleType(SampleType)>& f) { func = f; }
//==============================================================================
void paint(juce::Graphics& g) override
{
g.fillAll(juce::Colours::black);
g.setColour(juce::Colours::white);
auto area = getLocalBounds();
if (hasData && area.isFinite())
{
auto h = (SampleType)area.getHeight();
auto w = (SampleType)area.getWidth();
for (size_t i = 1; i < (size_t)numPoints; ++i)
{
auto px_prev = ((x[i - 1] - min) / (max - min)) * w;
auto py_prev = h - ((y[i - 1] - minY) / (maxY - minY)) * h;
auto px_next = ((x[i] - min) / (max - min)) * w;
auto py_next = h - ((y[i] - minY) / (maxY - minY)) * h;
g.drawLine({ px_prev, py_prev, px_next, py_next });
}
}
}
//==============================================================================
void resized() override {}
private:
//==============================================================================
std::vector<SampleType> x, y;
SampleType minY{ SampleType() }, maxY{ SampleType(1) };
SampleType min{}, max{};
int numPoints{};
std::function<SampleType(SampleType)> func;
bool hasData = false;
//==============================================================================
void timerCallback() override
{
const SampleType step = (max - min) / (SampleType)(numPoints - 1);
for (int i = 0; i < numPoints; i++)
{
x[(size_t)i] = min + step * (SampleType)i;
y[(size_t)i] = func(x[(size_t)i]);
}
auto p = std::minmax_element(y.begin(), y.end());
minY = *p.first;
maxY = *p.second;
hasData = true;
repaint();
}
};

View File

@@ -1,145 +0,0 @@
#pragma once
#include <atomic>
#include <unordered_map>
#include <string>
struct SliderDetail {
std::string label;
float min, max, interval, defValue;
};
using ParamMap = std::unordered_map<std::string, SliderDetail>;
// Each SliderDetail: { label, min, max, step, defaultValue }
const std::unordered_map<std::string, ParamMap> PARAM_SETTINGS = {
{ "chorus", {
{ "rate", { "Rate", 0.0f, 1.0f, 0.1f, 0.1f } },
{ "depth", { "Depth", 0.0f, 1.0f, 0.1f, 0.1f } },
{ "centre", { "Centre", 0.0f, 1.0f, 0.1f, 0.1f } },
{ "feedback", { "Feedback", 0.0f, 1.0f, 0.1f, 0.1f } },
{ "mix", { "Mix", 0.0f, 1.0f, 0.1f, 0.1f } }
}},
{ "delay", {
{ "delay", { "Delay", 0.0f, 1.0f, 0.1f, 0.1f } }
}},
{ "reverb", {
{ "roomSize", { "Room Size", 0.0f, 1.0f, 0.1f, 0.1f } },
{ "damping", { "Damping", 0.0f, 1.0f, 0.1f, 0.1f } },
{ "wetLevel", { "Wet Level", 0.0f, 1.0f, 0.1f, 0.1f } },
{ "dryLevel", { "Dry Level", 0.0f, 1.0f, 0.1f, 0.1f } },
{ "width", { "Width", 0.0f, 1.0f, 0.1f, 0.1f } },
{ "freezeMode", { "Freeze Mode", 0.0f, 1.0f, 0.1f, 0.1f } }
}},
{ "adsr", {
{ "attack", { "Attack", 0.0f, 1.0f, 0.1f, 0.1f } },
{ "decay", { "Decay", 0.0f, 1.0f, 0.1f, 0.1f } },
{ "sustain", { "Sustain", 0.0f, 1.0f, 0.1f, 0.1f } },
{ "release", { "Release", 0.0f, 1.0f, 0.1f, 0.1f } }
}},
// Filter envelope group (short key: "fenv")
{ "fenv", {
{ "attack", { "Attack", 0.0f, 2.0f, 0.001f, 0.01f } },
{ "decay", { "Decay", 0.0f, 2.0f, 0.001f, 0.10f } },
{ "sustain", { "Sustain", 0.0f, 1.0f, 0.001f, 0.80f } },
{ "release", { "Release", 0.0f, 4.0f, 0.001f, 0.40f } },
{ "amount", { "Amount", -1.0f, 1.0f, 0.001f, 0.50f } }
}},
{ "flanger", {
{ "rate", { "Rate", 0.1f, 5.0f, 0.1f, 0.1f } },
{ "depth", { "Depth", 0.1f, 10.0f, 0.1f, 0.1f } }, // ms
{ "feedback", { "Feedback", 0.0f, 0.95f, 0.01f, 0.1f } },
{ "dryMix", { "Dry/Wet", 0.0f, 1.0f, 0.01f, 0.0f } },
{ "phase", { "Phase", 0.0f, 1.0f, 0.1f, 0.0f } },
{ "delay", { "Delay", 0.0f, 3.0f, 0.1f, 0.25f } } // ms base
}},
{ "filter", {
{ "cutoff", { "Cutoff", 20.0f, 20000.0f, 1.0f, 1000.0f } },
{ "resonance", { "Resonance", 0.1f, 10.0f, 0.1f, 0.7f } },
{ "type", { "L/H/B", 0.0f, 2.0f, 1.0f, 0.0f } },
{ "drive", { "Drive", 0.0f, 1.0f, 0.01f, 0.0f } },
{ "mod", { "Mod", -1.0f, 1.0f, 0.1f, 0.0f } },
{ "key", { "Key", 0.0f, 1.0f, 0.1f, 0.0f } }
}},
{ "distortion", {
{ "drive", { "Drive", 0.0f, 30.0f, 0.1f, 10.0f } },
{ "mix", { "Mix", 0.0f, 1.0f, 0.01f, 0.0f } },
{ "bias", { "Bias", -1.0f, 1.0f, 0.01f, 0.0f } },
{ "tone", { "Tone", 100.0f, 8000.0f, 10.0f, 3000.0f } },
{ "shape", { "Shape", 0.0f, 2.0f, 1.0f, 0.0f } }
}}
};
struct NeuralSharedParams
{
std::atomic<int> waveform{ -1 };
// Amp ADSR
std::atomic<float>* adsrAttack{};
std::atomic<float>* adsrDecay{};
std::atomic<float>* adsrSustain{};
std::atomic<float>* adsrRelease{};
// Delay
std::atomic<float>* delayTime{};
// Chorus
std::atomic<float>* chorusRate{};
std::atomic<float>* chorusDepth{};
std::atomic<float>* chorusCentre{};
std::atomic<float>* chorusFeedback{};
std::atomic<float>* chorusMix{};
// Reverb
std::atomic<float>* reverbRoomSize{};
std::atomic<float>* reverbDamping{};
std::atomic<float>* reverbWetLevel{};
std::atomic<float>* reverbDryLevel{};
std::atomic<float>* reverbWidth{};
std::atomic<float>* reverbFreezeMode{};
// Flanger
std::atomic<float>* flangerRate{};
std::atomic<float>* flangerDepth{};
std::atomic<float>* flangerFeedback{};
std::atomic<float>* flangerDryMix{};
std::atomic<float>* flangerPhase{};
std::atomic<float>* flangerDelay{};
// Filter (base)
std::atomic<float>* filterCutoff{};
std::atomic<float>* filterResonance{};
std::atomic<float>* filterType{};
std::atomic<float>* filterDrive{};
std::atomic<float>* filterMod{};
std::atomic<float>* filterKey{};
// Filter Env (polyphonic)
std::atomic<float>* fenvAttack{};
std::atomic<float>* fenvDecay{};
std::atomic<float>* fenvSustain{};
std::atomic<float>* fenvRelease{};
std::atomic<float>* fenvAmount{}; // +/- octaves
// Distortion
std::atomic<float>* distortionDrive{};
std::atomic<float>* distortionMix{};
std::atomic<float>* distortionBias{};
std::atomic<float>* distortionTone{};
std::atomic<float>* distortionShape{};
// Per-panel bypass (AudioParameterBool, exposed as float 0/1 via getRawParameterValue)
std::atomic<float>* chorusOn{};
std::atomic<float>* delayOn{};
std::atomic<float>* reverbOn{};
std::atomic<float>* flangerOn{};
std::atomic<float>* distortionOn{};
std::atomic<float>* filterOn{};
std::atomic<float>* eqOn{};
// EQ + Master
std::atomic<float>* lowGainDbls{};
std::atomic<float>* midGainDbls{};
std::atomic<float>* highGainDbls{};
std::atomic<float>* masterDbls{};
};

View File

@@ -1,170 +0,0 @@
#include "PluginProcessor.h"
#include "PluginEditor.h"
#include "ScopeComponent.h"
//==============================================================================
NeuralSynthAudioProcessorEditor::NeuralSynthAudioProcessorEditor (NeuralSynthAudioProcessor& p)
: AudioProcessorEditor (&p),
audioProcessor (p),
mainScopeComponent(audioProcessor.getAudioBufferQueue())
{
auto& tree = audioProcessor.parameters;
addAndMakeVisible(mainScopeComponent);
waveformSelector.setModel(&waveformContents);
waveformContents.onSelect = [this](int row)
{
// write to the parameter so voices update safely
audioProcessor.parameters.getParameterAsValue("waveform") = (float)juce::jlimit(0, 3, row);
};
addAndMakeVisible(waveformSelector);
// --- Panels ---
adsrComponent.emplace(tree, "adsr", "Amp Env");
adsrComponent->enableGraphScope([this](float x) {
auto& tree = this->audioProcessor.parameters;
float A = tree.getParameter("adsr_attack")->getValue();
float D = tree.getParameter("adsr_decay")->getValue();
float S = tree.getParameter("adsr_sustain")->getValue();
float R = tree.getParameter("adsr_release")->getValue();
const float sustainLen = 1.0f;
const float total = A + D + sustainLen + R;
A /= total; D /= total; R /= total;
float m = 0.0f, c = 0.0f;
if (x < A) { m = 1.0f / A; c = 0.0f; }
else if (x < A + D) { m = (S - 1.0f) / D; c = 1.0f - m * A; }
else if (x < A + D + (sustainLen / total)) { m = 0.0f; c = S; }
else { m = (S / -R); c = -m; }
return m * x + c;
});
addAndMakeVisible(*adsrComponent);
chorusComponent.emplace(tree, "chorus", "Chorus");
chorusComponent->enableSampleScope(audioProcessor.getChorusAudioBufferQueue());
addAndMakeVisible(*chorusComponent);
delayComponent.emplace(tree, "delay", "Delay");
delayComponent->enableSampleScope(audioProcessor.getDelayAudioBufferQueue());
addAndMakeVisible(*delayComponent);
reverbComponent.emplace(tree, "reverb", "Reverb");
reverbComponent->enableSampleScope(audioProcessor.getReverbAudioBufferQueue());
addAndMakeVisible(*reverbComponent);
eqComponent.emplace(tree, "EQ");
addAndMakeVisible(*eqComponent);
flangerComponent.emplace(tree, "flanger", "Flanger");
flangerComponent->enableSampleScope(audioProcessor.getFlangerAudioBufferQueue());
addAndMakeVisible(*flangerComponent);
distortionComponent.emplace(tree, "distortion", "Distortion");
distortionComponent->enableSampleScope(audioProcessor.getDistortionAudioBufferQueue());
addAndMakeVisible(*distortionComponent);
filterComponent.emplace(tree, "filter", "Filter");
filterComponent->enableSampleScope(audioProcessor.getFilterAudioBufferQueue());
addAndMakeVisible(*filterComponent);
filterEnvComponent.emplace(tree, "fenv", "Filter Env");
filterEnvComponent->enableGraphScope([this](float x) {
auto& tree = this->audioProcessor.parameters;
float A = tree.getParameter("fenv_attack")->getValue();
float D = tree.getParameter("fenv_decay")->getValue();
float S = tree.getParameter("fenv_sustain")->getValue();
float R = tree.getParameter("fenv_release")->getValue();
const float sustainLen = 1.0f;
const float total = A + D + sustainLen + R;
A /= total; D /= total; R /= total;
float m = 0.0f, c = 0.0f;
if (x < A) { m = 1.0f / A; c = 0.0f; }
else if (x < A + D) { m = (S - 1.0f) / D; c = 1.0f - m * A; }
else if (x < A + D + (sustainLen / total)) { m = 0.0f; c = S; }
else { m = (S / -R); c = -m; }
return m * x + c;
});
addAndMakeVisible(*filterEnvComponent);
// Master fader + label
addAndMakeVisible(masterLevelSlider);
masterLevelLabel.setText("Master", juce::dontSendNotification);
{
juce::Font f; f.setHeight(12.0f); f.setBold(true);
masterLevelLabel.setFont(f);
}
masterLevelLabel.setJustificationType(juce::Justification::centred);
addAndMakeVisible(masterLevelLabel);
// Blank placeholder
addAndMakeVisible(blankPanel);
// Attach master parameter
gainAttachment = std::make_unique<juce::AudioProcessorValueTreeState::SliderAttachment>(
audioProcessor.parameters, "master", masterLevelSlider.slider);
setSize(1400, 720);
}
//==============================================================================
NeuralSynthAudioProcessorEditor::~NeuralSynthAudioProcessorEditor() = default;
//==============================================================================
void NeuralSynthAudioProcessorEditor::paint (juce::Graphics& g)
{
g.fillAll(getLookAndFeel().findColour (juce::ResizableWindow::backgroundColourId));
}
//==============================================================================
void NeuralSynthAudioProcessorEditor::resized()
{
auto bounds = getLocalBounds().reduced(16);
juce::Grid grid;
grid.templateRows = {
juce::Grid::TrackInfo(juce::Grid::Fr(20)), // scope row
juce::Grid::TrackInfo(juce::Grid::Fr(40)), // row 1
juce::Grid::TrackInfo(juce::Grid::Fr(40)) // row 2
};
// 6 columns: 5 content + 1 sidebar (waveform+master)
grid.templateColumns = {
juce::Grid::TrackInfo(juce::Grid::Fr(18)),
juce::Grid::TrackInfo(juce::Grid::Fr(18)),
juce::Grid::TrackInfo(juce::Grid::Fr(18)),
juce::Grid::TrackInfo(juce::Grid::Fr(18)),
juce::Grid::TrackInfo(juce::Grid::Fr(18)),
juce::Grid::TrackInfo(juce::Grid::Fr(10))
};
// Row 0
grid.items.add(juce::GridItem(mainScopeComponent)
.withArea(juce::GridItem::Span(1), juce::GridItem::Span(5)));
grid.items.add(juce::GridItem(waveformSelector)
.withArea(juce::GridItem::Span(1), juce::GridItem::Span(1)));
// Row 1
grid.items.add(juce::GridItem(*adsrComponent));
grid.items.add(juce::GridItem(*chorusComponent));
grid.items.add(juce::GridItem(*delayComponent));
grid.items.add(juce::GridItem(*reverbComponent));
grid.items.add(juce::GridItem(*eqComponent));
grid.items.add(juce::GridItem(masterLevelLabel));
// Row 2
grid.items.add(juce::GridItem(*flangerComponent));
grid.items.add(juce::GridItem(*distortionComponent));
grid.items.add(juce::GridItem(*filterComponent));
grid.items.add(juce::GridItem(*filterEnvComponent));
grid.items.add(juce::GridItem(blankPanel));
grid.items.add(juce::GridItem(masterLevelSlider));
grid.performLayout(bounds);
}

View File

@@ -1,341 +0,0 @@
#pragma once
#include <JuceHeader.h>
#include "PluginProcessor.h"
#include "GraphComponent.h"
#include "ScopeComponent.h"
//============================== ScopeSliderComponent ==========================
// A generic panel: optional scope/graph + rotary sliders + labels.
// Adds a per-panel "On" toggle (bound to "<group>_on").
class ScopeSliderComponent : public juce::Component {
static const int fontSize = 11;
public:
ScopeSliderComponent(juce::AudioProcessorValueTreeState& tree,
const std::string paramGroup,
const juce::String& titleText = {})
: paramGroupId(paramGroup), treeRef(tree)
{
const auto& sliderDetails = PARAM_SETTINGS.at(paramGroup);
for (const auto& [name, sliderDetail] : sliderDetails) {
sliders.push_back(std::make_unique<juce::Slider>());
labels.push_back(std::make_unique<juce::Label>());
attachments.push_back(std::make_unique<juce::AudioProcessorValueTreeState::SliderAttachment>(
tree, paramGroup + "_" + name, *sliders.back()));
labels.back()->setText(sliderDetail.label, juce::dontSendNotification);
sliders.back()->setRange(sliderDetail.min, sliderDetail.max);
}
for (auto& slider : sliders)
{
slider->setSliderStyle(juce::Slider::Rotary);
slider->setTextBoxStyle(juce::Slider::TextBoxBelow, false, 50, 20);
addAndMakeVisible(*slider);
}
for (auto& label : labels)
{
juce::Font f; f.setHeight((float)fontSize); f.setBold(true);
label->setFont(f);
label->setColour(juce::Label::textColourId, juce::Colours::lightgreen);
label->setJustificationType(juce::Justification::centred);
addAndMakeVisible(*label);
}
if (titleText.isNotEmpty())
{
titleLabel.setText(titleText, juce::dontSendNotification);
juce::Font tf; tf.setHeight(12.0f); tf.setBold(true);
titleLabel.setFont(tf);
titleLabel.setJustificationType(juce::Justification::centredLeft);
titleLabel.setColour(juce::Label::textColourId, juce::Colours::white);
addAndMakeVisible(titleLabel);
}
// Bypass toggle (per panel), id "<group>_on"
bypassButton.setButtonText("On");
bypassButton.setClickingTogglesState(true);
addAndMakeVisible(bypassButton);
bypassAttachment = std::make_unique<juce::AudioProcessorValueTreeState::ButtonAttachment>(
treeRef, paramGroupId + "_on", bypassButton);
}
void enableSampleScope(AudioBufferQueue<float>& audioBufferQueue) {
scope.emplace(audioBufferQueue);
useGraphScope = false;
addAndMakeVisible(*scope);
}
void enableGraphScope(const std::function<float(float)>& func) {
graphScope.emplace(0.0f, 1.0f, 100);
graphScope->setFunction(func);
useGraphScope = true;
addAndMakeVisible(*graphScope);
}
private:
void paint(juce::Graphics& g) override
{
g.fillAll(juce::Colours::darkgrey);
g.setColour(juce::Colours::white);
g.drawRect(getLocalBounds());
}
void resized() override
{
// --- Top bar (manual) ----------------------------------------------
auto area = getLocalBounds().reduced(10);
auto top = area.removeFromTop(22);
auto btnW = 46;
bypassButton.setBounds(top.removeFromRight(btnW).reduced(2, 1));
titleLabel.setBounds(top);
// --- Rest (grid) ----------------------------------------------------
juce::Grid grid;
grid.templateRows = {
juce::Grid::TrackInfo(juce::Grid::Fr(55)), // scope/graph
juce::Grid::TrackInfo(juce::Grid::Fr(30)), // sliders
juce::Grid::TrackInfo(juce::Grid::Fr(15)) // labels
};
const int n = (int)sliders.size();
grid.templateColumns.resize(n);
for (int i = 0; i < n; ++i)
grid.templateColumns.getReference(i) = juce::Grid::TrackInfo(juce::Grid::Fr(1));
grid.items.clear();
// Row 1: scope/graph only add if constructed
if (useGraphScope)
{
if (graphScope)
grid.items.add(juce::GridItem(*graphScope)
.withArea(juce::GridItem::Span(1), juce::GridItem::Span(n)));
else
grid.items.add(juce::GridItem()
.withArea(juce::GridItem::Span(1), juce::GridItem::Span(n)));
}
else
{
if (scope)
grid.items.add(juce::GridItem(*scope)
.withArea(juce::GridItem::Span(1), juce::GridItem::Span(n)));
else
grid.items.add(juce::GridItem()
.withArea(juce::GridItem::Span(1), juce::GridItem::Span(n)));
}
// Row 2: sliders
for (int i = 0; i < n; ++i)
grid.items.add(juce::GridItem(*sliders[(size_t)i]));
// Row 3: labels
for (int i = 0; i < n; ++i)
grid.items.add(juce::GridItem(*labels[(size_t)i]));
grid.performLayout(area);
}
bool useGraphScope{ false };
std::optional<ScopeComponent<float>> scope;
std::optional<GraphComponent<float>> graphScope;
std::vector<std::unique_ptr<juce::Slider>> sliders;
std::vector<std::unique_ptr<juce::Label>> labels;
std::vector<std::unique_ptr<juce::AudioProcessorValueTreeState::SliderAttachment>> attachments;
juce::ToggleButton bypassButton;
std::unique_ptr<juce::AudioProcessorValueTreeState::ButtonAttachment> bypassAttachment;
juce::Label titleLabel;
std::string paramGroupId;
juce::AudioProcessorValueTreeState& treeRef;
};
//============================== EqualizerComponent ============================
// Adds an On/Off toggle bound to "eq_on".
class EqualizerComponent : public juce::Component {
static const int fontSize = 11;
public:
explicit EqualizerComponent(juce::AudioProcessorValueTreeState& tree,
const juce::String& titleText = {})
{
setupSlider(lowGainSlider);
setupSlider(midGainSlider);
setupSlider(highGainSlider);
setupLabel(lowGainLabel, "L");
setupLabel(midGainLabel, "M");
setupLabel(highGainLabel, "H");
if (titleText.isNotEmpty())
{
titleLabel.setText(titleText, juce::dontSendNotification);
juce::Font tf; tf.setHeight(13.0f); tf.setBold(true);
titleLabel.setFont(tf);
titleLabel.setJustificationType(juce::Justification::centredLeft);
titleLabel.setColour(juce::Label::textColourId, juce::Colours::white);
addAndMakeVisible(titleLabel);
}
// Attachments
lowGainAttachment = std::make_unique<juce::AudioProcessorValueTreeState::SliderAttachment>(tree, "lowEQ", lowGainSlider);
midGainAttachment = std::make_unique<juce::AudioProcessorValueTreeState::SliderAttachment>(tree, "midEQ", midGainSlider);
highGainAttachment = std::make_unique<juce::AudioProcessorValueTreeState::SliderAttachment>(tree, "highEQ", highGainSlider);
// EQ bypass toggle
bypassButton.setButtonText("On");
bypassButton.setClickingTogglesState(true);
addAndMakeVisible(bypassButton);
bypassAttachment = std::make_unique<juce::AudioProcessorValueTreeState::ButtonAttachment>(tree, "eq_on", bypassButton);
}
private:
void setupSlider(juce::Slider& slider) {
slider.setRange(-24.0f, 24.0f, 0.1f);
slider.setSliderStyle(juce::Slider::LinearBarVertical);
slider.setTextBoxStyle(juce::Slider::TextBoxBelow, false, 50, 20);
addAndMakeVisible(slider);
}
void setupLabel(juce::Label& lbl, juce::String txt) {
juce::Font f; f.setHeight((float)fontSize); f.setBold(true);
lbl.setFont(f);
lbl.setColour(juce::Label::textColourId, juce::Colours::lightgreen);
lbl.setJustificationType(juce::Justification::centred);
lbl.setText(txt, juce::dontSendNotification);
addAndMakeVisible(lbl);
}
void paint(juce::Graphics& g) override {
g.fillAll(juce::Colours::darkgrey);
g.setColour(juce::Colours::white);
g.drawRect(getLocalBounds());
}
void resized() override {
auto area = getLocalBounds().reduced(10);
auto top = area.removeFromTop(22);
auto btnW = 46;
bypassButton.setBounds(top.removeFromRight(btnW).reduced(2, 1));
titleLabel.setBounds(top);
juce::Grid grid;
grid.templateRows = {
juce::Grid::TrackInfo(juce::Grid::Fr(1)),
juce::Grid::TrackInfo(juce::Grid::Fr(1))
};
grid.templateColumns = {
juce::Grid::TrackInfo(juce::Grid::Fr(1)),
juce::Grid::TrackInfo(juce::Grid::Fr(1)),
juce::Grid::TrackInfo(juce::Grid::Fr(1))
};
grid.items = {
lowGainSlider, midGainSlider, highGainSlider,
lowGainLabel, midGainLabel, highGainLabel
};
grid.performLayout(area);
}
juce::Slider lowGainSlider, midGainSlider, highGainSlider;
juce::Label lowGainLabel, midGainLabel, highGainLabel;
std::unique_ptr<juce::AudioProcessorValueTreeState::SliderAttachment> lowGainAttachment, midGainAttachment, highGainAttachment;
juce::ToggleButton bypassButton;
std::unique_ptr<juce::AudioProcessorValueTreeState::ButtonAttachment> bypassAttachment;
juce::Label titleLabel;
};
//============================== Waveform List Model ===========================
struct WaveformSelectorContents final : public juce::ListBoxModel
{
int getNumRows() override { return 4; }
void paintListBoxItem(int rowNumber, juce::Graphics& g,
int width, int height, bool rowIsSelected) override
{
if (rowIsSelected) g.fillAll(juce::Colours::lightblue);
g.setColour(juce::LookAndFeel::getDefaultLookAndFeel()
.findColour(juce::Label::textColourId));
juce::Font f; f.setHeight((float)height * 0.7f);
g.setFont(f);
g.drawText(waves[(size_t)rowNumber], 5, 0, width, height,
juce::Justification::centredLeft, true);
}
void selectedRowsChanged (int lastRowSelected) override
{
if (onSelect) onSelect(lastRowSelected);
}
std::function<void (int)> onSelect;
std::vector<juce::String> waves { "Sine", "Saw", "Square", "Triangle" };
};
//============================== MasterVolumeComponent =========================
class MasterVolumeComponent : public juce::Component
{
public:
MasterVolumeComponent()
{
slider.setSliderStyle(juce::Slider::LinearBarVertical);
slider.setTextBoxStyle(juce::Slider::NoTextBox, false, 20, 20);
addAndMakeVisible(slider);
}
void resized() override
{
slider.setBounds(getLocalBounds().reduced(30));
}
juce::Slider slider;
};
//============================== Editor =======================================
class NeuralSynthAudioProcessorEditor : public juce::AudioProcessorEditor
{
public:
NeuralSynthAudioProcessorEditor (NeuralSynthAudioProcessor&);
~NeuralSynthAudioProcessorEditor() override;
void paint (juce::Graphics&) override;
void resized() override;
private:
NeuralSynthAudioProcessor& audioProcessor;
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (NeuralSynthAudioProcessorEditor)
juce::ListBox waveformSelector;
WaveformSelectorContents waveformContents;
std::optional<ScopeSliderComponent> adsrComponent; // Amp Env
std::optional<ScopeSliderComponent> chorusComponent;
std::optional<ScopeSliderComponent> delayComponent;
std::optional<ScopeSliderComponent> reverbComponent;
std::optional<ScopeSliderComponent> flangerComponent;
std::optional<ScopeSliderComponent> distortionComponent;
std::optional<ScopeSliderComponent> filterComponent;
std::optional<ScopeSliderComponent> filterEnvComponent; // Filter Env panel
MasterVolumeComponent masterLevelSlider;
juce::Label masterLevelLabel;
std::optional<EqualizerComponent> eqComponent;
std::unique_ptr<juce::AudioProcessorValueTreeState::SliderAttachment> gainAttachment;
ScopeComponent<float> mainScopeComponent;
juce::Component blankPanel;
};

View File

@@ -1,270 +0,0 @@
#include "PluginProcessor.h"
#include "PluginEditor.h"
//==============================================================================
NeuralSynthAudioProcessor::NeuralSynthAudioProcessor()
: parameters(*this, nullptr, "PARAMETERS", createParameterLayout())
, AudioProcessor(BusesProperties().withOutput("Output", juce::AudioChannelSet::stereo(), true))
, audioEngine(sp)
{
parameters.addParameterListener("waveform", this);
// === Per-panel bypass (default OFF) ===
sp.chorusOn = parameters.getRawParameterValue("chorus_on");
sp.delayOn = parameters.getRawParameterValue("delay_on");
sp.reverbOn = parameters.getRawParameterValue("reverb_on");
sp.flangerOn = parameters.getRawParameterValue("flanger_on");
sp.distortionOn = parameters.getRawParameterValue("distortion_on");
sp.filterOn = parameters.getRawParameterValue("filter_on");
sp.eqOn = parameters.getRawParameterValue("eq_on");
// === Chorus ===
parameters.addParameterListener("chorus_rate", this);
parameters.addParameterListener("chorus_depth", this);
parameters.addParameterListener("chorus_centre", this);
parameters.addParameterListener("chorus_feedback", this);
parameters.addParameterListener("chorus_mix", this);
sp.chorusRate = parameters.getRawParameterValue("chorus_rate");
sp.chorusDepth = parameters.getRawParameterValue("chorus_depth");
sp.chorusCentre = parameters.getRawParameterValue("chorus_centre");
sp.chorusFeedback = parameters.getRawParameterValue("chorus_feedback");
sp.chorusMix = parameters.getRawParameterValue("chorus_mix");
// === Delay ===
parameters.addParameterListener("delay_delay", this);
sp.delayTime = parameters.getRawParameterValue("delay_delay");
// === Reverb ===
parameters.addParameterListener("reverb_roomSize", this);
parameters.addParameterListener("reverb_damping", this);
parameters.addParameterListener("reverb_wetLevel", this);
parameters.addParameterListener("reverb_dryLevel", this);
parameters.addParameterListener("reverb_width", this);
parameters.addParameterListener("reverb_freezeMode", this);
sp.reverbRoomSize = parameters.getRawParameterValue("reverb_roomSize");
sp.reverbDamping = parameters.getRawParameterValue("reverb_damping");
sp.reverbWetLevel = parameters.getRawParameterValue("reverb_wetLevel");
sp.reverbDryLevel = parameters.getRawParameterValue("reverb_dryLevel");
sp.reverbWidth = parameters.getRawParameterValue("reverb_width");
sp.reverbFreezeMode= parameters.getRawParameterValue("reverb_freezeMode");
// === Amp ADSR ===
parameters.addParameterListener("adsr_attack", this);
parameters.addParameterListener("adsr_decay", this);
parameters.addParameterListener("adsr_sustain", this);
parameters.addParameterListener("adsr_release", this);
sp.adsrAttack = parameters.getRawParameterValue("adsr_attack");
sp.adsrDecay = parameters.getRawParameterValue("adsr_decay");
sp.adsrSustain = parameters.getRawParameterValue("adsr_sustain");
sp.adsrRelease = parameters.getRawParameterValue("adsr_release");
// === Filter Env ===
parameters.addParameterListener("fenv_attack", this);
parameters.addParameterListener("fenv_decay", this);
parameters.addParameterListener("fenv_sustain", this);
parameters.addParameterListener("fenv_release", this);
parameters.addParameterListener("fenv_amount", this);
sp.fenvAttack = parameters.getRawParameterValue("fenv_attack");
sp.fenvDecay = parameters.getRawParameterValue("fenv_decay");
sp.fenvSustain = parameters.getRawParameterValue("fenv_sustain");
sp.fenvRelease = parameters.getRawParameterValue("fenv_release");
sp.fenvAmount = parameters.getRawParameterValue("fenv_amount");
// === Filter base ===
parameters.addParameterListener("filter_cutoff", this);
parameters.addParameterListener("filter_resonance", this);
parameters.addParameterListener("filter_type", this);
parameters.addParameterListener("filter_drive", this);
parameters.addParameterListener("filter_mod", this);
parameters.addParameterListener("filter_key", this);
sp.filterCutoff = parameters.getRawParameterValue("filter_cutoff");
sp.filterResonance = parameters.getRawParameterValue("filter_resonance");
sp.filterType = parameters.getRawParameterValue("filter_type");
sp.filterDrive = parameters.getRawParameterValue("filter_drive");
sp.filterMod = parameters.getRawParameterValue("filter_mod");
sp.filterKey = parameters.getRawParameterValue("filter_key");
// === Distortion ===
parameters.addParameterListener("distortion_drive", this);
parameters.addParameterListener("distortion_mix", this);
parameters.addParameterListener("distortion_bias", this);
parameters.addParameterListener("distortion_tone", this);
parameters.addParameterListener("distortion_shape", this);
sp.distortionDrive = parameters.getRawParameterValue("distortion_drive");
sp.distortionMix = parameters.getRawParameterValue("distortion_mix");
sp.distortionBias = parameters.getRawParameterValue("distortion_bias");
sp.distortionTone = parameters.getRawParameterValue("distortion_tone");
sp.distortionShape = parameters.getRawParameterValue("distortion_shape");
// === Master / EQ ===
parameters.addParameterListener("master", this);
parameters.addParameterListener("lowEQ", this);
parameters.addParameterListener("midEQ", this);
parameters.addParameterListener("highEQ", this);
sp.masterDbls = parameters.getRawParameterValue("master");
sp.lowGainDbls = parameters.getRawParameterValue("lowEQ");
sp.midGainDbls = parameters.getRawParameterValue("midEQ");
sp.highGainDbls = parameters.getRawParameterValue("highEQ");
}
NeuralSynthAudioProcessor::~NeuralSynthAudioProcessor() = default;
//==============================================================================
const juce::String NeuralSynthAudioProcessor::getName() const { return JucePlugin_Name; }
bool NeuralSynthAudioProcessor::acceptsMidi() const
{
#if JucePlugin_WantsMidiInput
return true;
#else
return false;
#endif
}
bool NeuralSynthAudioProcessor::producesMidi() const
{
#if JucePlugin_ProducesMidiOutput
return true;
#else
return false;
#endif
}
bool NeuralSynthAudioProcessor::isMidiEffect() const
{
#if JucePlugin_IsMidiEffect
return true;
#else
return false;
#endif
}
double NeuralSynthAudioProcessor::getTailLengthSeconds() const { return 0.0; }
int NeuralSynthAudioProcessor::getNumPrograms() { return 1; }
int NeuralSynthAudioProcessor::getCurrentProgram() { return 0; }
void NeuralSynthAudioProcessor::setCurrentProgram (int) {}
const juce::String NeuralSynthAudioProcessor::getProgramName (int) { return {}; }
void NeuralSynthAudioProcessor::changeProgramName (int, const juce::String&) {}
//==============================================================================
void NeuralSynthAudioProcessor::prepareToPlay (double sampleRate, int samplesPerBlock)
{
audioEngine.prepare({ sampleRate, (juce::uint32)samplesPerBlock, 2 });
midiMessageCollector.reset(sampleRate);
}
void NeuralSynthAudioProcessor::releaseResources() {}
bool NeuralSynthAudioProcessor::isBusesLayoutSupported (const BusesLayout& layouts) const
{
if (layouts.getMainOutputChannelSet() != juce::AudioChannelSet::mono()
&& layouts.getMainOutputChannelSet() != juce::AudioChannelSet::stereo())
return false;
return true;
}
void NeuralSynthAudioProcessor::processBlock(juce::AudioSampleBuffer& buffer, juce::MidiBuffer& midiMessages)
{
const int newWaveform = sp.waveform.exchange(-1);
if (newWaveform != -1) {
audioEngine.applyToVoices([newWaveform](NeuralSynthVoice* v)
{
v->changeWaveform(newWaveform);
});
}
juce::ScopedNoDenormals noDenormals;
auto totalNumInputChannels = getTotalNumInputChannels();
auto totalNumOutputChannels = getTotalNumOutputChannels();
midiMessageCollector.removeNextBlockOfMessages(midiMessages, buffer.getNumSamples());
for (int i = totalNumInputChannels; i < totalNumOutputChannels; ++i)
buffer.clear(i, 0, buffer.getNumSamples());
audioEngine.renderNextBlock(buffer, midiMessages, 0, buffer.getNumSamples());
scopeDataCollector.process(buffer.getReadPointer(0), (size_t)buffer.getNumSamples());
}
//==============================================================================
bool NeuralSynthAudioProcessor::hasEditor() const { return true; }
juce::AudioProcessorEditor* NeuralSynthAudioProcessor::createEditor()
{
return new NeuralSynthAudioProcessorEditor (*this);
}
//==============================================================================
void NeuralSynthAudioProcessor::getStateInformation (juce::MemoryBlock& destData) { juce::ignoreUnused(destData); }
void NeuralSynthAudioProcessor::setStateInformation (const void* data, int sizeInBytes) { juce::ignoreUnused(data, sizeInBytes); }
void NeuralSynthAudioProcessor::parameterChanged(const juce::String& id, float newValue)
{
juce::ignoreUnused(newValue);
if (id == "waveform")
sp.waveform.store((int)newValue, std::memory_order_release);
}
//==============================================================================
// This creates new instances of the plugin..
juce::AudioProcessor* JUCE_CALLTYPE createPluginFilter() { return new NeuralSynthAudioProcessor(); }
void NeuralSynthAudioProcessor::buildParams(std::vector<std::unique_ptr<juce::RangedAudioParameter>>& params, const std::string& paramGroup) {
const auto& paramGroupSettings = PARAM_SETTINGS.at(paramGroup);
for (const auto& [name, s] : paramGroupSettings) {
params.push_back(std::make_unique<juce::AudioParameterFloat>(
paramGroup + "_" + name, s.label,
juce::NormalisableRange<float>(s.min, s.max, s.interval),
s.defValue));
}
}
juce::AudioProcessorValueTreeState::ParameterLayout NeuralSynthAudioProcessor::createParameterLayout()
{
std::vector<std::unique_ptr<juce::RangedAudioParameter>> params;
params.push_back(std::make_unique<juce::AudioParameterChoice>(
"waveform", "Waveform",
juce::StringArray{ "Sine", "Saw", "Square", "Triangle" }, 0));
// Per-panel bypass toggles (default OFF)
params.push_back(std::make_unique<juce::AudioParameterBool>("chorus_on", "Chorus On", false));
params.push_back(std::make_unique<juce::AudioParameterBool>("delay_on", "Delay On", false));
params.push_back(std::make_unique<juce::AudioParameterBool>("reverb_on", "Reverb On", false));
params.push_back(std::make_unique<juce::AudioParameterBool>("flanger_on", "Flanger On", false));
params.push_back(std::make_unique<juce::AudioParameterBool>("distortion_on", "Distortion On", false));
params.push_back(std::make_unique<juce::AudioParameterBool>("filter_on", "Filter On", false));
params.push_back(std::make_unique<juce::AudioParameterBool>("eq_on", "EQ On", false));
buildParams(params, "adsr");
buildParams(params, "fenv");
buildParams(params, "chorus");
buildParams(params, "delay");
buildParams(params, "reverb");
buildParams(params, "flanger");
buildParams(params, "distortion");
buildParams(params, "filter");
params.push_back(std::make_unique<juce::AudioParameterFloat>("master", "Master",
juce::NormalisableRange<float>(-24.0f, 24.0f, 0.1f), 0.1f));
params.push_back(std::make_unique<juce::AudioParameterFloat>("lowEQ", "Low Gain",
juce::NormalisableRange<float>(-24.0f, 24.0f, 0.1f), 0.5f));
params.push_back(std::make_unique<juce::AudioParameterFloat>("midEQ", "Mid EQ",
juce::NormalisableRange<float>(-24.0f, 24.0f, 0.1f), 0.8f));
params.push_back(std::make_unique<juce::AudioParameterFloat>("highEQ", "High EQ",
juce::NormalisableRange<float>(-24.0f, 24.0f, 0.1f), 1.0f));
return { params.begin(), params.end() };
}

View File

@@ -1,90 +0,0 @@
#pragma once
#include <JuceHeader.h>
#include "AudioBufferQueue.h"
#include "AudioEngine.h"
#include "ScopeDataCollector.h"
#include "NeuralSharedParams.h"
//==============================================================================
// Processor
class NeuralSynthAudioProcessor : public juce::AudioProcessor,
private juce::AudioProcessorValueTreeState::Listener
{
public:
NeuralSynthAudioProcessor();
~NeuralSynthAudioProcessor() override;
// AudioProcessor overrides
void prepareToPlay(double sampleRate, int samplesPerBlock) override;
void releaseResources() override;
#ifndef JucePlugin_PreferredChannelConfigurations
bool isBusesLayoutSupported(const BusesLayout& layouts) const override;
#endif
void processBlock(juce::AudioBuffer<float>&, juce::MidiBuffer&) override;
// Editor
juce::AudioProcessorEditor* createEditor() override;
bool hasEditor() const override;
// Info
const juce::String getName() const override;
bool acceptsMidi() const override;
bool producesMidi() const override;
bool isMidiEffect() const override;
double getTailLengthSeconds() const override;
// Programs
int getNumPrograms() override;
int getCurrentProgram() override;
void setCurrentProgram(int index) override;
const juce::String getProgramName(int index) override;
void changeProgramName(int index, const juce::String& newName) override;
// State
void getStateInformation(juce::MemoryBlock& destData) override;
void setStateInformation(const void* data, int sizeInBytes) override;
// Parameters
void parameterChanged(const juce::String& id, float newValue) override;
void buildParams(std::vector<std::unique_ptr<juce::RangedAudioParameter>>& params,
const std::string& paramGroup);
juce::AudioProcessorValueTreeState::ParameterLayout createParameterLayout();
// Utilities
juce::MidiMessageCollector& getMidiMessageCollector() noexcept { return midiMessageCollector; }
AudioBufferQueue<float>& getAudioBufferQueue() noexcept { return audioBufferQueue; }
AudioBufferQueue<float>& getChorusAudioBufferQueue() noexcept { return chorusBufferQueue; }
AudioBufferQueue<float>& getDelayAudioBufferQueue() noexcept { return delayBufferQueue; }
AudioBufferQueue<float>& getReverbAudioBufferQueue() noexcept { return reverbBufferQueue; }
AudioBufferQueue<float>& getFlangerAudioBufferQueue() noexcept { return flangerBufferQueue; }
AudioBufferQueue<float>& getDistortionAudioBufferQueue() noexcept { return distortionBufferQueue; }
AudioBufferQueue<float>& getFilterAudioBufferQueue() noexcept { return filterBufferQueue; }
// Public members (by JUCE convention)
juce::MidiMessageCollector midiMessageCollector;
juce::AudioProcessorValueTreeState parameters;
private:
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (NeuralSynthAudioProcessor)
// ---- IMPORTANT ORDER FIX ----
// Objects are constructed in THIS order. 'sp' must come BEFORE audioEngine.
NeuralSharedParams sp; // <— construct first
NeuralAudioEngine audioEngine; // needs a valid reference to 'sp'
// Meter/scope queues
AudioBufferQueue<float> audioBufferQueue;
AudioBufferQueue<float> chorusBufferQueue;
AudioBufferQueue<float> delayBufferQueue;
AudioBufferQueue<float> reverbBufferQueue;
AudioBufferQueue<float> flangerBufferQueue;
AudioBufferQueue<float> distortionBufferQueue;
AudioBufferQueue<float> filterBufferQueue;
// Scope collector (uses audioBufferQueue, so declare after it)
ScopeDataCollector<float> scopeDataCollector { audioBufferQueue };
};

View File

@@ -1,102 +0,0 @@
#pragma once
#include "AudioBufferQueue.h"
//==============================================================================
template <typename SampleType>
class ScopeComponent : public juce::Component,
private juce::Timer
{
public:
using Queue = AudioBufferQueue<SampleType>;
//==============================================================================
ScopeComponent(Queue& queueToUse)
: audioBufferQueue(queueToUse)
{
sampleData.fill(SampleType(0));
setFramesPerSecond(30);
}
//==============================================================================
void setFramesPerSecond(int framesPerSecond)
{
jassert(framesPerSecond > 0 && framesPerSecond < 1000);
startTimerHz(framesPerSecond);
}
//==============================================================================
void paint(juce::Graphics& g) override
{
g.fillAll(juce::Colours::black);
g.setColour(juce::Colours::white);
auto area = getLocalBounds();
auto h = (SampleType)area.getHeight();
auto w = (SampleType)area.getWidth();
// Oscilloscope
auto scopeRect = juce::Rectangle<SampleType>{ SampleType(0), SampleType(0), w, h / 2 };
plot(sampleData.data(), sampleData.size(), g, scopeRect, SampleType(1), h / 4);
// Spectrum
auto spectrumRect = juce::Rectangle<SampleType>{ SampleType(0), h / 2, w, h / 2 };
plot(spectrumData.data(), spectrumData.size() / 4, g, spectrumRect);
}
//==============================================================================
void resized() override {}
private:
//==============================================================================
Queue& audioBufferQueue;
std::array<SampleType, Queue::bufferSize> sampleData;
juce::dsp::FFT fft{ Queue::order };
using WindowFun = juce::dsp::WindowingFunction<SampleType>;
WindowFun windowFun{ (size_t)fft.getSize(), WindowFun::hann };
std::array<SampleType, 2 * Queue::bufferSize> spectrumData;
//==============================================================================
void timerCallback() override
{
audioBufferQueue.pop(sampleData.data());
juce::FloatVectorOperations::copy(spectrumData.data(), sampleData.data(), (int)sampleData.size());
auto fftSize = (size_t)fft.getSize();
jassert(spectrumData.size() == 2 * fftSize);
windowFun.multiplyWithWindowingTable(spectrumData.data(), fftSize);
fft.performFrequencyOnlyForwardTransform(spectrumData.data());
static constexpr auto mindB = SampleType(-160);
static constexpr auto maxdB = SampleType(0);
for (auto& s : spectrumData)
s = juce::jmap(juce::jlimit(mindB, maxdB, juce::Decibels::gainToDecibels(s) - juce::Decibels::gainToDecibels(SampleType(fftSize))), mindB, maxdB, SampleType(0), SampleType(1));
repaint();
}
//==============================================================================
static void plot(const SampleType* data,
size_t numSamples,
juce::Graphics& g,
juce::Rectangle<SampleType> rect,
SampleType scaler = SampleType(1),
SampleType offset = SampleType(0))
{
auto w = rect.getWidth();
auto h = rect.getHeight();
auto right = rect.getRight();
auto center = rect.getBottom() - offset;
auto gain = h * scaler;
for (size_t i = 1; i < numSamples; ++i)
g.drawLine({ juce::jmap(SampleType(i - 1), SampleType(0), SampleType(numSamples - 1), SampleType(right - w), SampleType(right)),
center - gain * data[i - 1],
juce::jmap(SampleType(i), SampleType(0), SampleType(numSamples - 1), SampleType(right - w), SampleType(right)),
center - gain * data[i] });
}
};

View File

@@ -1,62 +0,0 @@
#pragma once
template <typename SampleType>
class ScopeDataCollector
{
public:
//==============================================================================
ScopeDataCollector(AudioBufferQueue<SampleType>& queueToUse)
: audioBufferQueue(queueToUse)
{
}
//==============================================================================
void process(const SampleType* data, size_t numSamples)
{
size_t index = 0;
if (state == State::waitingForTrigger)
{
while (index++ < numSamples)
{
auto currentSample = *data++;
if (currentSample >= triggerLevel && prevSample < triggerLevel)
{
numCollected = 0;
state = State::collecting;
break;
}
prevSample = currentSample;
}
}
if (state == State::collecting)
{
while (index++ < numSamples)
{
buffer[numCollected++] = *data++;
if (numCollected == buffer.size())
{
audioBufferQueue.push(buffer.data(), buffer.size());
state = State::waitingForTrigger;
prevSample = SampleType(100);
break;
}
}
}
}
private:
//==============================================================================
AudioBufferQueue<SampleType>& audioBufferQueue;
std::array<SampleType, AudioBufferQueue<SampleType>::bufferSize> buffer;
size_t numCollected;
SampleType prevSample = SampleType(100);
static constexpr auto triggerLevel = SampleType(0.05);
enum class State { waitingForTrigger, collecting } state{ State::waitingForTrigger };
};

View File

@@ -1,398 +0,0 @@
#include "SynthVoice.h"
#include <cmath>
//==============================================================================
NeuralSynthVoice::NeuralSynthVoice (NeuralSharedParams& sp)
: shared (sp) {}
//==============================================================================
void NeuralSynthVoice::prepare (const juce::dsp::ProcessSpec& newSpec)
{
spec = newSpec;
// --- Oscillator
osc.prepare (spec.sampleRate);
setWaveform (0); // default to sine
// --- Scratch buffer (IMPORTANT: allocate real memory)
tempBuffer.setSize ((int) spec.numChannels, (int) spec.maximumBlockSize,
false, false, true);
tempBlock = juce::dsp::AudioBlock<float> (tempBuffer);
// --- Prepare chain elements
chain.prepare (spec);
// Set maximum delay sizes BEFORE runtime changes
{
// Flanger: up to 20 ms
auto& flanger = chain.get<flangerIndex>();
const size_t maxFlangerDelay = (size_t) juce::jmax<size_t>(
1, (size_t) std::ceil (0.020 * spec.sampleRate));
flanger.setMaximumDelayInSamples (maxFlangerDelay);
flanger.reset();
}
{
// Simple delay: up to 2 s
auto& delay = chain.get<delayIndex>();
const size_t maxDelay = (size_t) juce::jmax<size_t>(
1, (size_t) std::ceil (2.0 * spec.sampleRate));
delay.setMaximumDelayInSamples (maxDelay);
delay.reset();
}
// Envelopes
adsr.setSampleRate (spec.sampleRate);
filterAdsr.setSampleRate (spec.sampleRate);
// Filter
svf.reset();
svf.prepare (spec);
// Initial filter type
const int type = (int) std::lround (juce::jlimit (0.0f, 2.0f,
shared.filterType ? shared.filterType->load() : 0.0f));
switch (type)
{
case 0: svf.setType (juce::dsp::StateVariableTPTFilterType::lowpass); break;
case 1: svf.setType (juce::dsp::StateVariableTPTFilterType::highpass); break;
case 2: svf.setType (juce::dsp::StateVariableTPTFilterType::bandpass); break;
default: break;
}
}
//==============================================================================
void NeuralSynthVoice::renderNextBlock (juce::AudioBuffer<float>& outputBuffer,
int startSample, int numSamples)
{
if (numSamples <= 0)
return;
if (! adsr.isActive())
clearCurrentNote();
// Apply pending waveform change (from GUI / processor thread)
const int wf = pendingWaveform.exchange (-1, std::memory_order_acq_rel);
if (wf != -1)
setWaveform (wf);
// --- Generate oscillator into temp buffer
tempBuffer.clear();
const int numCh = juce::jmin ((int) spec.numChannels, tempBuffer.getNumChannels());
for (int i = 0; i < numSamples; ++i)
{
const float s = osc.process();
for (int ch = 0; ch < numCh; ++ch)
tempBuffer.getWritePointer (ch)[i] = s;
}
auto block = tempBlock.getSubBlock (0, (size_t) numSamples);
// ================================================================
// Flanger (pre-filter) manual per-sample to set varying delay
// ================================================================
{
auto& flanger = chain.get<flangerIndex>();
const bool enabled = shared.flangerOn && shared.flangerOn->load() > 0.5f;
if (enabled)
{
const float rate = shared.flangerRate ? shared.flangerRate->load() : 0.0f;
float lfoPhase = shared.flangerPhase ? shared.flangerPhase->load() : 0.0f;
const float flangerDepth = shared.flangerDepth ? shared.flangerDepth->load() : 0.0f; // ms
const float mix = shared.flangerDryMix ? shared.flangerDryMix->load() : 0.0f;
const float feedback = shared.flangerFeedback ? shared.flangerFeedback->load() : 0.0f;
const float baseDelayMs = shared.flangerDelay ? shared.flangerDelay->load() : 0.25f;
for (int i = 0; i < numSamples; ++i)
{
const float in = tempBuffer.getReadPointer (0)[i];
const float lfo = std::sin (lfoPhase);
const float delayMs = baseDelayMs + 0.5f * (1.0f + lfo) * flangerDepth;
const float delaySamples = juce::jmax (0.0f, delayMs * 0.001f * (float) spec.sampleRate);
flanger.setDelay (delaySamples);
const float delayed = flanger.popSample (0);
flanger.pushSample (0, in + delayed * feedback);
const float out = in * (1.0f - mix) + delayed * mix;
for (int ch = 0; ch < numCh; ++ch)
tempBuffer.getWritePointer (ch)[i] = out;
lfoPhase += juce::MathConstants<float>::twoPi * rate / (float) spec.sampleRate;
if (lfoPhase > juce::MathConstants<float>::twoPi)
lfoPhase -= juce::MathConstants<float>::twoPi;
}
}
}
// ================================================================
// Filter with per-sample ADSR modulation (poly)
// ================================================================
{
const bool enabled = shared.filterOn && shared.filterOn->load() > 0.5f;
// Update filter type every block (cheap)
const int ftype = (int) std::lround (juce::jlimit (0.0f, 2.0f,
shared.filterType ? shared.filterType->load() : 0.0f));
switch (ftype)
{
case 0: svf.setType (juce::dsp::StateVariableTPTFilterType::lowpass); break;
case 1: svf.setType (juce::dsp::StateVariableTPTFilterType::highpass); break;
case 2: svf.setType (juce::dsp::StateVariableTPTFilterType::bandpass); break;
default: break;
}
const float qOrRes = juce::jlimit (0.1f, 10.0f,
shared.filterResonance ? shared.filterResonance->load() : 0.7f);
svf.setResonance (qOrRes);
const float baseCutoff = juce::jlimit (20.0f, 20000.0f,
shared.filterCutoff ? shared.filterCutoff->load() : 1000.0f);
const float envAmt = shared.fenvAmount ? shared.fenvAmount->load() : 0.0f;
for (int i = 0; i < numSamples; ++i)
{
const float envVal = filterAdsr.getNextSample();
const float cutoff = juce::jlimit (20.0f, 20000.0f,
baseCutoff * std::pow (2.0f, envAmt * envVal));
svf.setCutoffFrequency (cutoff);
if (enabled)
{
for (int ch = 0; ch < numCh; ++ch)
{
float x = tempBuffer.getSample (ch, i);
x = svf.processSample (ch, x);
tempBuffer.setSample (ch, i, x);
}
}
}
}
// ================================================================
// Chorus
// ================================================================
if (shared.chorusOn && shared.chorusOn->load() > 0.5f)
{
auto& chorus = chain.get<chorusIndex>();
if (shared.chorusCentre) chorus.setCentreDelay (shared.chorusCentre->load());
if (shared.chorusDepth) chorus.setDepth (shared.chorusDepth->load());
if (shared.chorusFeedback) chorus.setFeedback (shared.chorusFeedback->load());
if (shared.chorusMix) chorus.setMix (shared.chorusMix->load());
if (shared.chorusRate) chorus.setRate (shared.chorusRate->load());
chain.get<chorusIndex>().process (juce::dsp::ProcessContextReplacing<float> (block));
}
// ================================================================
// Simple Delay (per-voice)
// ================================================================
if (shared.delayOn && shared.delayOn->load() > 0.5f)
{
auto& delay = chain.get<delayIndex>();
const float time = shared.delayTime ? shared.delayTime->load() : 0.1f;
delay.setDelay (juce::jmax (0.0f, time * (float) spec.sampleRate));
delay.process (juce::dsp::ProcessContextReplacing<float> (block));
}
// ================================================================
// Reverb
// ================================================================
if (shared.reverbOn && shared.reverbOn->load() > 0.5f)
{
juce::Reverb::Parameters rp;
rp.damping = shared.reverbDamping ? shared.reverbDamping->load() : 0.0f;
rp.dryLevel = shared.reverbDryLevel ? shared.reverbDryLevel->load() : 0.0f;
rp.freezeMode = shared.reverbFreezeMode ? shared.reverbFreezeMode->load() : 0.0f;
rp.roomSize = shared.reverbRoomSize ? shared.reverbRoomSize->load() : 0.0f;
rp.wetLevel = shared.reverbWetLevel ? shared.reverbWetLevel->load() : 0.0f;
rp.width = shared.reverbWidth ? shared.reverbWidth->load() : 0.0f;
chain.get<reverbIndex>().setParameters (rp);
chain.get<reverbIndex>().process (juce::dsp::ProcessContextReplacing<float> (block));
}
// ================================================================
// Distortion + tone (post LPF/Peak)
// ================================================================
{
const float driveDb = shared.distortionDrive ? shared.distortionDrive->load() : 0.0f;
const float bias = juce::jlimit (-1.0f, 1.0f, shared.distortionBias ? shared.distortionBias->load() : 0.0f);
const float toneHz = juce::jlimit (100.0f, 8000.0f, shared.distortionTone ? shared.distortionTone->load() : 3000.0f);
const int shape = (int) std::lround (juce::jlimit (0.0f, 2.0f,
shared.distortionShape ? shared.distortionShape->load() : 0.0f));
const float mix = shared.distortionMix ? shared.distortionMix->load() : 0.0f;
auto& pre = chain.get<distortionPreGain>();
auto& sh = chain.get<distortionIndex>();
auto& tone = chain.get<distortionPostLPF>();
pre.setGainDecibels (driveDb);
// Explicit std::function target (works on MSVC)
if (shape == 0) sh.functionToUse = std::function<float(float)>{ [bias](float x) noexcept { return std::tanh (x + bias); } };
else if (shape == 1) sh.functionToUse = std::function<float(float)>{ [bias](float x) noexcept { return juce::jlimit (-1.0f, 1.0f, x + bias); } };
else sh.functionToUse = std::function<float(float)>{ [bias](float x) noexcept { return std::atan (x + bias) * (2.0f / juce::MathConstants<float>::pi); } };
tone.coefficients = juce::dsp::IIR::Coefficients<float>::makePeakFilter (
spec.sampleRate, toneHz, 0.707f,
juce::Decibels::decibelsToGain (shared.highGainDbls ? shared.highGainDbls->load() : 0.0f));
if (shared.distortionOn && shared.distortionOn->load() > 0.5f)
{
// Wet/dry blend around the shaper
juce::AudioBuffer<float> dryCopy (tempBuffer.getNumChannels(), numSamples);
for (int ch = 0; ch < numCh; ++ch)
dryCopy.copyFrom (ch, 0, tempBuffer, ch, 0, numSamples);
// pre -> shaper -> tone
pre.process (juce::dsp::ProcessContextReplacing<float> (block));
sh.process (juce::dsp::ProcessContextReplacing<float> (block));
tone.process (juce::dsp::ProcessContextReplacing<float> (block));
const float wet = mix, dry = 1.0f - mix;
for (int ch = 0; ch < numCh; ++ch)
{
auto* d = dryCopy.getReadPointer (ch);
auto* w = tempBuffer.getWritePointer (ch);
for (int i = 0; i < numSamples; ++i)
w[i] = dry * d[i] + wet * w[i];
}
}
}
// ================================================================
// EQ + Master + Limiter (EQ guarded by eqOn)
// ================================================================
{
const bool eqEnabled = shared.eqOn && shared.eqOn->load() > 0.5f;
auto& eqL = chain.get<eqLowIndex>();
auto& eqM = chain.get<eqMidIndex>();
auto& eqH = chain.get<eqHighIndex>();
if (eqEnabled)
{
eqL.coefficients = juce::dsp::IIR::Coefficients<float>::makeLowShelf (
spec.sampleRate, 100.0f, 0.707f,
juce::Decibels::decibelsToGain (shared.lowGainDbls ? shared.lowGainDbls->load() : 0.0f));
eqM.coefficients = juce::dsp::IIR::Coefficients<float>::makePeakFilter (
spec.sampleRate, 1000.0f, 1.0f,
juce::Decibels::decibelsToGain (shared.midGainDbls ? shared.midGainDbls->load() : 0.0f));
eqH.coefficients = juce::dsp::IIR::Coefficients<float>::makePeakFilter (
spec.sampleRate, 10000.0f, 0.707f,
juce::Decibels::decibelsToGain (shared.highGainDbls ? shared.highGainDbls->load() : 0.0f));
eqL.process (juce::dsp::ProcessContextReplacing<float> (block));
eqM.process (juce::dsp::ProcessContextReplacing<float> (block));
eqH.process (juce::dsp::ProcessContextReplacing<float> (block));
}
chain.get<masterIndex>().setGainDecibels (shared.masterDbls ? shared.masterDbls->load() : 0.0f);
chain.get<masterIndex>().process (juce::dsp::ProcessContextReplacing<float> (block));
chain.get<limiterIndex>().process (juce::dsp::ProcessContextReplacing<float> (block));
}
// ================================================================
// Apply AMP ADSR envelope
// ================================================================
{
juce::AudioBuffer<float> buf (tempBuffer.getArrayOfWritePointers(), numCh, numSamples);
adsr.applyEnvelopeToBuffer (buf, 0, numSamples);
}
// Mix into output
juce::dsp::AudioBlock<float> (outputBuffer)
.getSubBlock ((size_t) startSample, (size_t) numSamples)
.add (block);
}
//==============================================================================
void NeuralSynthVoice::noteStarted()
{
const float freqHz = (float) getCurrentlyPlayingNote().getFrequencyInHertz();
// Oscillator frequency and phase retrigger
osc.setFrequency (freqHz);
osc.resetPhase (0.0f);
// Chorus snapshot
if (shared.chorusCentre) chain.get<chorusIndex>().setCentreDelay (shared.chorusCentre->load());
if (shared.chorusDepth) chain.get<chorusIndex>().setDepth (shared.chorusDepth->load());
if (shared.chorusFeedback) chain.get<chorusIndex>().setFeedback (shared.chorusFeedback->load());
if (shared.chorusMix) chain.get<chorusIndex>().setMix (shared.chorusMix->load());
if (shared.chorusRate) chain.get<chorusIndex>().setRate (shared.chorusRate->load());
// Delay time (in samples)
if (shared.delayTime)
chain.get<delayIndex>().setDelay (juce::jmax (0.0f, shared.delayTime->load() * (float) spec.sampleRate));
// Reverb snapshot
juce::Reverb::Parameters rp;
rp.damping = shared.reverbDamping ? shared.reverbDamping->load() : 0.0f;
rp.dryLevel = shared.reverbDryLevel ? shared.reverbDryLevel->load() : 0.0f;
rp.freezeMode = shared.reverbFreezeMode ? shared.reverbFreezeMode->load() : 0.0f;
rp.roomSize = shared.reverbRoomSize ? shared.reverbRoomSize->load() : 0.0f;
rp.wetLevel = shared.reverbWetLevel ? shared.reverbWetLevel->load() : 0.0f;
rp.width = shared.reverbWidth ? shared.reverbWidth->load() : 0.0f;
chain.get<reverbIndex>().setParameters (rp);
// Amp ADSR
juce::ADSR::Parameters ap;
ap.attack = shared.adsrAttack ? shared.adsrAttack->load() : 0.01f;
ap.decay = shared.adsrDecay ? shared.adsrDecay->load() : 0.10f;
ap.sustain = shared.adsrSustain ? shared.adsrSustain->load() : 0.80f;
ap.release = shared.adsrRelease ? shared.adsrRelease->load() : 0.40f;
adsr.setParameters (ap);
adsr.noteOn();
// Filter ADSR
juce::ADSR::Parameters fp;
fp.attack = shared.fenvAttack ? shared.fenvAttack->load() : 0.01f;
fp.decay = shared.fenvDecay ? shared.fenvDecay->load() : 0.10f;
fp.sustain = shared.fenvSustain ? shared.fenvSustain->load() : 0.80f;
fp.release = shared.fenvRelease ? shared.fenvRelease->load() : 0.40f;
filterAdsr.setParameters (fp);
filterAdsr.noteOn();
}
//==============================================================================
void NeuralSynthVoice::notePitchbendChanged()
{
const float freqHz = (float) getCurrentlyPlayingNote().getFrequencyInHertz();
osc.setFrequency (freqHz);
}
//==============================================================================
void NeuralSynthVoice::noteStopped (bool allowTailOff)
{
juce::ignoreUnused (allowTailOff);
adsr.noteOff();
filterAdsr.noteOff();
}
//==============================================================================
void NeuralSynthVoice::setWaveform (int waveformType)
{
switch (juce::jlimit (0, 3, waveformType))
{
case 0: osc.setWave (BlepWave::Sine); break;
case 1: osc.setWave (BlepWave::Saw); break;
case 2: osc.setWave (BlepWave::Square); break;
case 3: osc.setWave (BlepWave::Triangle); break;
default: osc.setWave (BlepWave::Sine); break;
}
}

View File

@@ -1,97 +0,0 @@
#pragma once
#include <JuceHeader.h>
#include <functional> // <-- for std::function used by WaveShaper
#include "NeuralSharedParams.h"
#include "BlepOsc.h"
//==============================================================================
// A single polyBLEP oscillator voice with per-voice ADSR, filter ADSR,
// flanger (delayline), simple delay, chorus, reverb, distortion, EQ, master.
class NeuralSynthVoice : public juce::MPESynthesiserVoice
{
public:
explicit NeuralSynthVoice (NeuralSharedParams& sharedParams);
// JUCE voice API
void prepare (const juce::dsp::ProcessSpec& spec);
void renderNextBlock (juce::AudioBuffer<float>& outputBuffer,
int startSample, int numSamples) override;
void noteStarted() override;
void noteStopped (bool allowTailOff) override;
void notePitchbendChanged() override;
void notePressureChanged() override {}
void noteTimbreChanged() override {}
void noteKeyStateChanged() override {}
// Called from the processor when the GUI waveform param changes
void changeWaveform (int wf) { setWaveform (wf); }
private:
void setWaveform (int waveformType);
//=== Processing chain (without oscillator) ===============================
using DelayLine = juce::dsp::DelayLine<float,
juce::dsp::DelayLineInterpolationTypes::Linear>;
using IIR = juce::dsp::IIR::Filter<float>;
using Gain = juce::dsp::Gain<float>;
using WaveShaper = juce::dsp::WaveShaper<float, std::function<float(float)>>; // <-- fix
using Chorus = juce::dsp::Chorus<float>;
using Reverb = juce::dsp::Reverb;
using Limiter = juce::dsp::Limiter<float>;
enum ChainIndex
{
flangerIndex = 0,
delayIndex,
chorusIndex,
reverbIndex,
distortionPreGain,
distortionIndex,
distortionPostLPF,
eqLowIndex,
eqMidIndex,
eqHighIndex,
masterIndex,
limiterIndex
};
using Chain = juce::dsp::ProcessorChain<
DelayLine, // flanger
DelayLine, // simple delay
Chorus, // chorus
Reverb, // reverb
Gain, // distortion pre-gain (drive)
WaveShaper, // distortion waveshaper
IIR, // tone / post-EQ for distortion
IIR, // EQ low
IIR, // EQ mid
IIR, // EQ high
Gain, // master gain
Limiter // safety limiter
>;
private:
NeuralSharedParams& shared;
juce::dsp::ProcessSpec spec {};
// ==== Oscillator (polyBLEP) ============================================
BlepOsc osc;
std::atomic<int> pendingWaveform {-1}; // set by changeWaveform()
// ==== Envelopes & Filter ===============================================
juce::ADSR adsr;
juce::ADSR filterAdsr;
juce::dsp::StateVariableTPTFilter<float> svf;
// ==== Chain (FX, EQ, master, limiter) ==================================
Chain chain;
// ==== Scratch buffer (properly allocated) ===============================
juce::AudioBuffer<float> tempBuffer;
juce::dsp::AudioBlock<float> tempBlock;
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (NeuralSynthVoice)
};

View File

@@ -1,261 +0,0 @@
#pragma once
#include <JuceHeader.h>
#include <vector>
#include <cmath>
// ============================== Design =======================================
// - Bank with F frames, each frame is a single-cycle table of N samples.
// - For each frame, we create L mip-levels: level 0 = full bandwidth,
// level l halves the permitted harmonics (spectral truncation).
// - Runtime chooses level from note frequency and sampleRate, then morphs
// between adjacent frames and crossfades between the two nearest levels.
// - Table read uses linear interpolation (cheap and good enough with N>=2048).
namespace WT
{
// Utility: complex array wrapper for JUCE FFT (interleaved real/imag floats)
struct ComplexBuf
{
std::vector<float> data; // size = 2 * N
explicit ComplexBuf(size_t N = 0) { resize(N); }
void resize(size_t N) { data.assign(2 * N, 0.0f); }
juce::dsp::Complex<float>* asComplex() { return reinterpret_cast<juce::dsp::Complex<float>*>(data.data()); }
};
// =======================================================================
// WavetableBank: holds raw frames + mipmapped versions
// =======================================================================
class Bank
{
public:
// N = table length (must be power-of-two for FFT), frames = number of morph frames
// mipLevels = how many spectral levels (>=1). 5 ~ 6 is plenty for synth use.
Bank(size_t N = 2048, int frames = 16, int mipLevels = 6)
: tableSize(N), numFrames(frames), numLevels(mipLevels),
fft((int)std::log2((double)N))
{
jassert(juce::isPowerOfTwo((int)N));
tables.resize((size_t)numLevels);
for (int l = 0; l < numLevels; ++l)
tables[(size_t)l].resize((size_t)numFrames, std::vector<float>(tableSize, 0.0f));
}
size_t getSize() const { return tableSize; }
int getFrames() const { return numFrames; }
int getLevels() const { return numLevels; }
// Provide raw “design” frames (time-domain single-cycle) then call buildMipmaps().
// framesRaw.size() must equal numFrames, each frame length must equal tableSize.
void setRawFrames(const std::vector<std::vector<float>>& framesRaw)
{
jassert((int)framesRaw.size() == numFrames);
for (const auto& f : framesRaw) jassert(f.size() == tableSize);
raw = framesRaw;
}
// Convenience: generate 16-frame bank morphing Sine -> Saw -> Square -> Triangle
void generateDefaultMorph()
{
std::vector<std::vector<float>> frames;
frames.resize((size_t)numFrames, std::vector<float>(tableSize, 0.0f));
auto fill = [&](int idx, auto func)
{
auto& t = frames[(size_t)idx];
for (size_t n = 0; n < tableSize; ++n)
{
const float ph = (float) (juce::MathConstants<double>::twoPi * (double)n / (double)tableSize);
t[n] = func(ph);
}
normalise(t);
};
// helper waves
auto sine = [](float ph) { return std::sin(ph); };
auto saw = [](float ph) { return (float)(2.0 * (ph / juce::MathConstants<float>::twoPi) - 1.0); };
auto sq = [](float ph) { return ph < juce::MathConstants<float>::pi ? 1.0f : -1.0f; };
auto tri = [](float ph) {
float v = (float)(2.0 * std::abs(2.0 * (ph / juce::MathConstants<float>::twoPi) - 1.0) - 1.0);
return v;
};
// 0..5: sine->saw, 6..10: saw->square, 11..15: square->triangle
const int F = numFrames;
for (int i = 0; i < F; ++i)
{
const float t = (float) i / (float) juce::jmax(1, F - 1);
std::function<float(float)> a, b;
float mix = 0.0f;
if (i <= 5) { a = sine; b = saw; mix = (float)i / 5.0f; }
else if (i <=10) { a = saw; b = sq; mix = (float)(i - 6) / 4.0f; }
else { a = sq; b = tri; mix = (float)(i - 11) / 4.0f; }
fill(i, [=](float ph){ return (1.0f - mix) * a(ph) + mix * b(ph); });
}
setRawFrames(frames);
}
// Build mip-levels by FFT → spectral truncation → IFFT
void buildMipmaps()
{
jassert(!raw.empty());
ComplexBuf freq(tableSize);
ComplexBuf time(tableSize);
for (int f = 0; f < numFrames; ++f)
{
// Forward FFT of raw frame
std::fill(freq.data.begin(), freq.data.end(), 0.0f);
for (size_t n = 0; n < tableSize; ++n)
{
time.data[2 * n + 0] = raw[(size_t)f][n];
time.data[2 * n + 1] = 0.0f;
}
fft.performRealOnlyForwardTransform(time.data.data());
// After JUCE real FFT, bins are laid out as: Re[0], Re[N/2], Re[1], Im[1], Re[2], Im[2], ...
// We'll reconstruct complex bins for easy masking.
// Helper to zero all harmonics above kMax (inclusive index in [0..N/2])
auto maskAndIFFT = [&](int level, int kMax)
{
// Copy time.data into working complex bins
auto* bins = freq.asComplex();
// DC & Nyquist are purely real in real-FFT
bins[0].real (time.data[0]);
bins[0].imag (0.0f);
bins[tableSize/2].real (time.data[1]);
bins[tableSize/2].imag (0.0f);
// Rebuild the rest (Re[k], Im[k]) packed starting at index 2
for (size_t k = 1; k < tableSize/2; ++k)
{
bins[k].real (time.data[2 * k + 0]);
bins[k].imag (time.data[2 * k + 1]);
}
// Mask
for (size_t k = (size_t)kMax + 1; k < tableSize/2; ++k)
bins[k] = { 0.0f, 0.0f };
// Pack back into real-FFT layout for inverse
time.data[0] = bins[0].real(); // DC
time.data[1] = bins[tableSize/2].real(); // Nyquist
for (size_t k = 1; k < tableSize/2; ++k)
{
time.data[2 * k + 0] = bins[k].real();
time.data[2 * k + 1] = bins[k].imag();
}
// IFFT
fft.performRealOnlyInverseTransform(time.data.data());
// Copy, normalise a little (scale JUCE inverse divides by N already)
auto& dst = tables[(size_t)level][(size_t)f];
for (size_t n = 0; n < tableSize; ++n)
dst[n] = time.data[2 * n + 0];
normalise(dst);
};
// Level 0 → all harmonics available up to N/2 - 1
for (int l = 0; l < numLevels; ++l)
{
const int maxH = (int)((tableSize / 2) >> l); // halve per level
const int kMax = juce::jmax(1, juce::jmin(maxH, (int)tableSize/2 - 1));
maskAndIFFT(l, kMax);
}
}
}
// sample at (frame, level, phase in [0,1))
inline float lookup (float frameIdx, int level, float phase) const noexcept
{
const int f0 = juce::jlimit(0, numFrames - 1, (int)std::floor(frameIdx));
const int f1 = juce::jlimit(0, numFrames - 1, f0 + 1);
const float t = juce::jlimit(0.0f, 1.0f, frameIdx - (float)f0);
const auto& T0 = tables[(size_t)level][(size_t)f0];
const auto& T1 = tables[(size_t)level][(size_t)f1];
const float pos = phase * (float)tableSize;
const int i0 = (int) std::floor(pos) & (int)(tableSize - 1);
const int i1 = (i0 + 1) & (int)(tableSize - 1);
const float a = pos - (float) std::floor(pos);
const float s0 = juce::jmap(a, T0[(size_t)i0], T0[(size_t)i1]);
const float s1 = juce::jmap(a, T1[(size_t)i0], T1[(size_t)i1]);
return juce::jmap(t, s0, s1);
}
// choose mip-level for given frequency (Hz) & sampleRate
inline int chooseLevel (float freq, double sampleRate) const noexcept
{
// permitted harmonics at this pitch:
const float maxH = (float) (0.5 * sampleRate / juce::jmax(1.0f, freq));
// level so that harmonic budget of level >= maxH, i.e. l = ceil(log2((N/2)/maxH))
const float base = (float)(tableSize * 0.5);
const float ratio = base / juce::jmax(1.0f, maxH);
int l = (int) std::ceil (std::log2 (ratio));
return juce::jlimit (0, numLevels - 1, l);
}
static void normalise (std::vector<float>& t)
{
float mx = 0.0f;
for (float v : t) mx = juce::jmax(mx, std::abs(v));
if (mx < 1.0e-6f) return;
for (float& v : t) v /= mx;
}
private:
size_t tableSize;
int numFrames;
int numLevels;
juce::dsp::FFT fft;
std::vector<std::vector<float>> raw;
// [level][frame][sample]
std::vector<std::vector<std::vector<float>>> tables;
};
// =======================================================================
// Wavetable Oscillator
// =======================================================================
class Osc
{
public:
void prepare (double sr) { sampleRate = sr; }
void setBank (std::shared_ptr<Bank> b) { bank = std::move(b); }
void setFrequency (float f) { freq = juce::jmax(0.0f, f); phaseInc = freq / (float)sampleRate; }
void setMorph (float m) { morph = m; } // 0..frames-1 (continuous)
void resetPhase (float p = 0.0f) { phase = juce::jlimit(0.0f, 1.0f, p); }
float process()
{
if (!bank) return 0.0f;
const int l0 = bank->chooseLevel(freq, sampleRate);
const int l1 = juce::jmin(l0 + 1, bank->getLevels() - 1);
const float preferL0 = 1.0f - juce::jlimit(0.0f, 1.0f,
(float)l0 - (float)bank->chooseLevel(freq * 0.99f, sampleRate));
const float s0 = bank->lookup(morph, l0, phase);
const float s1 = bank->lookup(morph, l1, phase);
const float out = juce::jmap(preferL0, s1, s0); // simple crossfade
phase += phaseInc;
while (phase >= 1.0f) phase -= 1.0f;
return out;
}
private:
std::shared_ptr<Bank> bank;
double sampleRate { 44100.0 };
float freq { 0.0f };
float morph { 0.0f }; // 0..frames-1
float phase { 0.0f };
float phaseInc { 0.0f };
};
} // namespace WT